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822 (29), 821 (18), 820 (47), 819 (59), 818 (76), 817 (82), 816 (94), 815 
(100), 814 (88), 813 (94), 812 (65), 811 (47), 810 (41), 809 (35), 808 (24), 
807 (18), 806 (18), 805 (12). H2FeRuOs2(CO)I3: 911 (13), 910 (28), 909 
(20), 908 (65), 907 (53), 906 (93), 905 (98), 904 (100), 903 (88), 902 (93), 
901 (58), 900 (55), 899 (38), 898 (25), 897 (20), 896 (13), 895 (8). 

(15) J. R. Moss and W. A. G. Graham, J. Organomet, Chem., 23, C23 (1970). 
(16) (a)P.Chini, PureAppl. Chem., 23, 489 (1970). (b) Os3(CO)12: \max(«)327 

(9600) W. Gladfelter, unpublished observation). 
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Excited-State Reactivity Patterns of 
Hexakisarylisocyano Complexes of Chromium(O), 
Molybdenum(O), and Tungsten(O) 

Sir: 

The photochemical behavior of metal complexes possessing 
low-lying metal to ligand charge transfer (MLCT) excited 
states is poorly understood at present, owing to the virtual 
absence of systematic investigations on such systems.1 For this 
reason we have initiated a research program aimed at the 
elucidation of the photochemistry of low-valent metal com
plexes containing arylisocyanide ligands. Many of these 
complexes exhibit intense visible absorption bands attributable 
to MLCT transitions,2 and with third-row d6 metals such as 
W(O) and Re(I) there is reason to believe that these transitions 
are much less energetic than the lowest d-d excitation. Our 
studies to date have shown that the system comprised of hex
akisarylisocyano complexes of Cr(O), Mo(O), and W(O) ap
pears particularly promising from a photochemical standpoint. 
Accordingly, we communicate here the results of experiments 
that demonstrate the rich photochemical properties of this 
system. 

Emission data from measurements of ML6 complexes (M 
= Cr(O), Mo(O), W(O); L = CNPh, CNIph; Ph = phenyl, Iph 
= 2,6-diisopropylphenyl) in pyridine at room temperature and 
in 2-MeTHF at 77 K are set out in Table I. Emission from the 
Mo(O) and W(O) complexes was also observed in 2-methyl-
pentane, benzene, and 2-MeTHF solutions at room tempera
ture. In each case the emission band is red-shifted and broad
ened in going from 77 to 298 K. Only extremely weak emission 
was observed for Cr(CNIph)6 at 298 K in fluid solutions. 

The low temperature emission band of each of the W(O) 
complexes overlaps an absorption system (at 550 nm in 
W(CNPh)6) that is found on the low energy tail of the lowest 
intense feature (Figure 1). Similar behavior was observed for 
the Mo(O) complexes. The Cr(O) complexes exhibit much 
weaker and broader emissions than those seen in the Mo(O) 
and W(O) complexes; in each case this emission overlaps the 
lowest intense absorption band (Figure 2). The emission life
times in 2-methylpentane for the M(CNIph)6 complexes are 

Table I. Emission Data" for ML6 Complexes 

Figure 1. Absorption and emission spectra of W(CNPh)6 in 2-MeTHF 
at 77 K. 
as follows: r (Cr) < 10 ns, r (Mo) 40.2 ± 0.5 us, r (W) 7.6 ^s 
(77 K); T (Mo) 43 ± 2 ns, T (W) 83 ± 2 ns (298 K). The much 
shorter lifetime for the Cr(O) complex suggests that in that case 
the emission is an allowed (singlet -» singlet) L T * -*• d?r pro
cess. As the emissions from the Mo(O) and W(O) complexes 
have longer lifetimes, they probably represent LTT* -*• d-ir 
transitions with triplet -*• singlet character, although the 
designation of the lowest spin-orbit excited state as a "triplet" 
is undoubtedly a gross oversimplification.'' 

Irradiation of ML6 (M = Cr, Mo, W) in pyridine solutions 
at 436 nm gives photosubstitution (eq I):3 

436 nm 

ML6 —>• ML5py + L 
py 

(D 

The quantum yields decrease in an interesting pattern, 
[Cr(CNPh)6] (0.23) ~ [Cr(CNIpIi)6] (0.23) > [Mo(CNPh)6] 
(0.055) > [Mo(CNIph)6] (0.022) > [W(CNPh)6] (0.011) » 
[W(CNIph)6] (0.0003). The lowering of the yield for substi
tution in going to the heavier metals and increased steric hin
drance of the ligand suggests that for the Mo(O) and particu
larly for the W(O) complexes the mechanism has associative 
character.4 That is, the small quantum yield for W(CNPh)6, 
which is drastically decreased in W(CNIph)6, may be ac
counted for by direct nucleophilic attack on the positively 
charged metal center in an MLCT state, [M+(CNPh)6

-]*. 
Such attack could not occur without great steric strain in 
W(CNIpIi)6. Our results for the two tungsten arylisocyanides, 
therefore, provide a convincing case for a bimolecular excited 
state substitution pathway, and stand in striking contrast to 
the many dissociative photosubstitution reactions that have 
been documented for M(CO)n (n = 4, 5, 6) complexes.5,6 

Irradiation of M(CNIph)6 (M = Cr, Mo, W) in well-de-

77 K 298 K 

Complex 

Cr(CNPh)6 

Mo(CNPh)6^ 
W(CNPh)6^ 
Cr(CNIph)6 
Mo(CNIph)6 
W(CNIph)6 

Xmax(nm)* 

590 (400) 
559(450) 
571(450) 
583(380) 
568 (450) 
578(400) 

"max (cm-1)*' 

16 900(1800) 
17 900(1100) 
17 500(900) 
17 200(2100) 
17 600(1200) 
17 300(1150) 

Vnax(nm)* 

Not obsd 
613(420) 
638(420) 
600 (380) 
579 (450) 
578 (420) 

"max (cm ')' ' 

Not obsd 
16 300(2700) 
15 700(3200) 
16 700 
17 300(2000) 
17 300(1800) 

" All spectra were corrected for phototube and monochromator response; 77 K measurements were made in 2-MeTHF glasses; 298 K mea
surements were made in pyridine solutions. * Excitation wavelengths (nm) are given in parentheses. c Full widths (cm-1) at half-height are 
given in parentheses. d Quantum yields at 77 K are as follows: Mo, 0.78 ± 0.08; W, 0.93 ± 0.07 (excitation at 450 nm; measured relative to 
Ru(bpy)3Cl2 yield of 0.376 ± 0.036, as reported by J. N. Demas and G. A. Crosby, J. Am. Chem. Soc, 93, 2841 (1971)). 
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Figure 2. Absorption and emission spectra of Cr(CNPh)6 in 2-MeTHF 
at 77 K. 

gassed chloroform at X 436 nm gives the one-electron oxidation 
products M(CNIph)6+.7 Complexes of this type containing 
low-spin d5 Cr(I) have recently been prepared by thermal 
routes and characterized by Treichel and Essenmacher.8 The 
quantum yield for each of the three complexes is 0.19 ± 0.01. 
In the presence of oxygen this yield increases dramatically 
(with M = Cr, the yield at 436 nm is 0.70 ± 0.01 in chloroform 
saturated with air).9 Irradiation OfM(CNPh)6 (M = Mo, W) 
produces seven-coordinate, two-electron oxidation products, 
[M(CNPh)6Cl]+.10 Molybdenum(II) complexes of similar 
composition have been characterized previously by Lippard 
and co-workers11 as well as by Bonati and Minghetti.12 

The above experimental results are consistent with the fol
lowing mechanistic scheme: 

436 nm 

ML6 —*- ML6* 

ML6* + HCCl3 [ML6
+- -HCCl3--

(2) 

(3) 

[ML6
+- - -HCCl3--] — ML6

+ + HCCl3-- (4) 

[ML6
+- - -HCCl3--] — [ML6Cl+ HCCl2--] (5) 

[ML6Cl+- - -HCCl2--] -* [ML6Cl]+ + HCCl2-- (6) 

The MLCT excited state formed (eq 2) is quenched by chlo
roform via electron transfer forming the radical pair 
[ML6

+—HCCl3--].13 This species can revert back to starting 
materials or undergo reaction. For L = CNIph, the HCCl3--
radical presumably diffuses away, eventually releasing Cl - . 
We propose that this step is rate controlling, thereby giving the 
constant quantum yield of 0.19 for the three metals.14 In the 
complexes containing CNPh, which are much less hindered, 
we suggest that the chloroform radical anion transfers a 
chlorine atom to ML6

+ (eq 5), giving the seven-coordinate 
products that are observed for M = Mo, W. 
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Crown Ether Model Systems for the Study of 
Photoexcited State Response to Geometrically Oriented 
Perturbers. The Effect of Alkali Metal Ions on Emission 
from Naphthalene Derivatives1 

Sir: 

Compounds 1 and 2 and a number of other new crown ether 
naphthalene derivatives' have been designed and synthesized 
to facilitate the study of the naphthalene chromophore and its 
response to a variety of perturbers. An important feature of 
these molecules is the predetermined orientation of the chro
mophore and a complexed perturber. In an exploratory study 
of alkali metal halide perturbation of 1 and 2' ~4 we have found 
that these closely related naphthalene derivatives exhibit di-

Table I. Phosphorescence Lifetimes of 2,3-Naphtho-20-crown-6 
(1) and l,8-Naphtho-21-crown-6 (2) in 95% Ethanol Glass at 77 K 
with Alkali Chloride Salts Added in 5:1 Molar Excess (crown at 
2.00X 10"4F) 

1 + 
NaCl 
KCl 
RbCl 
CsCl 

Tp (S) 

2.9 
3.4 
3.1 
2.7 
2.2 

2 + 
NaCl 
KCl 
RbCl 
CsCl 

Tp (S) 

2.45 
2.3 
1.4 
1.3 
1.2 
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